Wi-Fi HaLow: Powering the Evolution of Smart Cities – IoT Business News

4 minutes, 7 seconds Read

By Michael De Nil, Co-Founder & CEO, Morse Micro.

The global smart city movement represents a major shift in how urban environments are designed, experienced and navigated. This monumental change is driven in part by digital transformation and Internet of Things (IoT) technologies, which are reshaping urban infrastructure and cityscapes into hubs of intelligent connectivity. Central to this trend is the emergence of advanced wireless technologies that align with the unique demands of smart cities. Among these emerging technologies, Wi-Fi CERTIFIED HaLowTM stands out as an ideal wireless protocol for smart city connectivity.

Wi-Fi HaLow, an evolution of conventional Wi-Fi, is purpose-built to serve the needs of IoT applications. Incorporating the IEEE 802.11ah standard, it was released as a new certification by the Wi-Fi Alliance in November 2021. Wi-Fi HaLow operates in the sub-GHz band and surpasses traditional Wi-Fi in the 2.4, 5 and 6 GHz bands in terms of range, coverage and power efficiency, redefining the boundaries of wireless connectivity for smart city and IoT applications. Wi-Fi HaLow has the capacity to connect more than 8,000 devices from a single access point, providing long range connectivity beyond 1 km, low power consumption, advanced Wi-Fi CERTIFIED WPA3TM security, and massive network density – precisely the attributes demanded by smart cities.

Building on the strengths of the IEEE 802.11ah standard, Morse Micro is developing next-generation Wi-Fi HaLow solutions that extend 10 times farther and cover 100x the area of traditional Wi-Fi networks. These advancements further the goals of smart city application developers, facilitating long-range connectivity, automating urban services and promoting environmental sustainability.

A prime example of this innovation is the potential impact of Wi-Fi HaLow networks on smart city transit systems. Traditional network infrastructure upgrades often reach bottlenecks due to the high cost and complexity of expanding wireline networks, underscoring the need for new forms of long range wireless technology. In such scenarios, Wi-Fi HaLow’s superior range, penetration and performance offer a transformative solution, far surpassing the range limitations of conventional Wi-Fi in the 2.4, 5 and 6 GHz bands while outperforming the low data rates of low-power wide-area networks (LPWANs) such as LoRa.

Wi-Fi HaLow’s versatility enables it to combine diverse building automation systems into a unified connectivity platform that provides an optimal balance of speed and range, and allows innovative IoT applications that may combine video with sensors, for example. It provides seamless connectivity between real-time operational data and the people and systems managing smart buildings, data centers, industrial processes, and other urban utilities. Its extended range and advanced security make it ideal for connecting a plethora of subsystems, from HVAC and smart lighting to microgrids and edge AI cameras.

By using standards-based Wi-Fi HaLow, the total cost to deploy and manage network services for smart cities is lower than other wireless solutions. Wi-Fi HaLow uses license-free radio spectrum in its operation, and Wi-Fi HaLow enabled equipment can be sourced from multiple OEMs. Unlike cellular service providers, which charge fees to use their networks, there is no recurring cost to use Wi-Fi HaLow connectivity. Expert personnel who understand Wi-Fi technology are plentiful and can use well-established methodologies to operate and maintain Wi-Fi HaLow networks. These economic benefits help reduce smart city operating costs, and the savings can trickle down to a municipality’s citizens.

On an enterprise level, Wi-Fi HaLow supercharges a wide array of smart city applications including security and safety systems, energy management, maintenance, occupant services, utility billing, demand management, indoor air quality (IAQ) monitors and compliance systems. With its distinct advantages in range, power efficiency, network capacity and security, Wi-Fi HaLow can equip these applications with the capacity to handle amounts of IoT device connectivity, significantly enhancing operations and services within a smart city.

Wi-Fi HaLow’s unique blend of long range, low-power consumption, advanced security and high-density connectivity is transforming smart city applications. Whether in support of automated transit systems, streamlined building operations or enhanced enterprise applications, Wi-Fi HaLow is a powerhouse protocol capable of addressing the myriad needs of a smart city. Its ability to connect thousands of IoT devices across sprawling urban landscapes enables efficient data sharing and automation, driving improved city services, environmental sustainability, and a higher quality of life for residents.

As cities worldwide transition to smart, connected environments, advanced wireless protocols like Wi-Fi HaLow have become key enablers of technology innovation. By providing a connectivity solution tailored to the distinct requirements of IoT applications, Wi-Fi HaLow isn’t merely contributing to the development of smart cities – it’s setting a higher standard of wireless communications. Wi-Fi HaLow’s growing market momentum represents a significant leap toward a smarter, safer, and more connected future, reshaping our urban landscapes one city at a time.

About the Author: Michael De Nil is co-founder and CEO of Morse Micro. He played a key role in the digital chip development of the 802.11 Wi-Fi chips found in most modern smartphones and had 10 years of experience in low-power digital IC design at imec and Broadcom before founding Morse Micro.

  • Singtel banner Accelerate IoT innovation with the right CSP in APAC
  • Singtel banner Accelerate IoT innovation with the right CSP in APAC
author

Any Streams

AI Enabled Business & IT Automation

Similar Posts